Comme l’expliquait Paul Lockhart, les mathématiques sont un art et c’est pourquoi l’enseignement des mathématiques, et ce dès le plus jeune âge, doit être un dosage subtil entre technique et art, les deux étant intrinsèquement mélangés grâce au plaisir et au rêve. Le calcul lui-même doit passer de l’état de technique à l’état d’art. La question de savoir à quoi sert le cours de mathématiques est encore très souvent posée : il est essentiel de comprendre qu’en plus d’une culture mathématique citoyenne nécessaire, le cours de mathématiques apporte, au-delà du raisonnement logique, de l’esprit critique, de la rigueur et de l’autonomie, la capacité à établir des vérités absolues à travers des preuves. C’est une caractéristique forte de notre culture. S’il ne suffit pas que le professeur enseigne bien pour que les élèves apprennent bien, il n’empêche que certaines conditions d’enseignement se révèlent plus efficaces que d’autres en termes d’apprentissage. Si l’on récapitule les missions du cours de mathématiques, on voit qu’il remplit des objectifs très variés : assurer aux futurs citoyens des compétences minimales dans le maniement des concepts mathématiques, leur donner les clés d’un raisonnement logique de qualité, les sensibiliser à l’importance des sciences mathématiques dans notre culture, notre histoire, notre technologie, préparer de futurs scientifiques, ingénieurs et mathématiciens à des métiers de plus en plus nombreux. La poursuite de tous ces objectifs demande un savant dosage qui ne peut s’improviser et nécessite une préparation spécifique. En aucun cas ce rapport n’entend établir de dogme ou de bréviaire sur ce que serait un bon cours de mathématiques. En revanche, il propose des pistes pour renouveler les pratiques observées, certaines ayant montré leurs limites. Ce constat est unanimement partagé par les personnes qui ont été entendues par la mission. On a pu constater, depuis le début des années 1990, la substitution du cours par des activités diverses (activités de découverte, tâches complexes censées développer des compétences transversales, démarche d’investigation, démarche de projet, activités interdisciplinaires, etc.) qui n’avaient pourtant pas vocation à le faire disparaître. La volonté de rendre les élèves chercheurs peut être pertinente, bien évidemment, mais l’on peut s’interroger, en termes d’efficacité, sur le choix des moments, des durées, des thèmes de ces recherches, voire la manière dont elles sont conduites. Les activités de découverte sont trop souvent artificielles, le monde réel s’avérant beaucoup plus difficile à appréhender que les modèles mathématiques utilisés pour le décrire ; souvent, les contextes retenus perturbent les élèves plutôt qu’ils ne les aident et ces modèles sont tellement simplifiés qu’ils n’apportent pas de réelle plus-value aux disciplines auxquelles ils sont empruntés (économie, sciences physiques, etc.). De même, les tâches complexes n’ont pas toujours un objectif d’apprentissage mathématique clair. Leur conception s’avère extrêmement chronophage pour les professeurs et leur résolution l’est également pour les élèves, sans pour autant être toujours porteuse d’apprentissage, notamment auprès des plus faibles en mathématiques. De manière générale, ces activités visent à « faire » plutôt qu’à « apprendre ». Très difficiles à mener de façon efficiente, elles peuvent s’avérer opportunes mais ne doivent en aucun cas se substituer à une vraie phase de formalisation ni à un travail régulier d’entraînement. Pour pouvoir utiliser les mathématiques avec efficacité, notamment dans des situations complexes, il faut avoir acquis des connaissances, des méthodes, et avoir été sensibilisé aux stratégies de résolution de problèmes spécifiques à la discipline. Toutes ces choses doivent être aussi enseignées. On ne développe des compétences solides qu’en s’appuyant sur des connaissances solides. Plus généralement, il faut tendre vers une plus grande efficacité et s’interroger sur ce que chaque élève a appris à l’issue d’une séance.